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ABSTRACT: 
Finite element analysis (FEA) and Computational fluid dynamics (CFD) are the major 

computer aided Engineering (CAE) applications used for virtual product development. 

The quality of the CAE carried out is directly related to the input material property and 

simulation technology. However, nonlinear materials like polymers present a challenge to 

successfully obtain the required input data for FEA and CFD. In this paper we review the 

techniques and technology available to obtain the relevant data using existing 

methodologies for elastomeric materials and present information on how this can be 

improved for reliable simulations for rapid prototyping.  

 

APPLICATION OF CAE TOOLS IN THE INDUSTRY: 
Predicting Stiffness: Establishing the correct stiffness for a component is an important 

specification requirement for the automotive and aerospace industry. It is preferred to 

“fine-tune” the stiffness of a part in all the three axes with the selected material before 

making the prototype. 

Deformed Shapes: FEA and CFD can provide a deformed shape of the part with actual 

service conditions imposed on the part. 

Durability Analysis: Based on the deformation and stress-strain distribution, relative 

durability analysis can be performed. 
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Life Prediction: With stress-strain information of a part from thermal aging, fatigue 

aging and unaged test data, one can develop an empirical estimate of service life of the 

part. 

Identifying the “Hot Spots” of the Part: Computational mechanics tools provide stress 

distribution of the part at various points. This information is helpful for identifying the 

stress “hot spots” in a particular design. This stress “hot spot” may be crack initiation 

point. 

Mold Design: CFD and FEA can be used to design extruders, mixers, and other 

production equipment. Only low strain FEA is needed to optimize the mold design under 

the influence of a clamping force and internal pressures. By establishing the stress 

distribution throughout the mold, optimum design can be calculated for various zones in 

the mold.  

Cure Simulation: CFD and FEA can be used to determine the temperatures in a molding 

process as a function to time. This transient thermal diffusion analysis needs input data 

such as thermal conductivity and thermal capacitance of the rubber as a function of 

temperature. Repeated FEA iterations can establish the optimum cure as a function of 

mold temperature and time. 

Injection Molding: Similar to cure simulation, injection molding simulation by CFD and 

FEA is a transient process. The main purpose in examining injection molding is the 

characterization of apparent viscosity of the material with respect to shear rate and 

temperature. This type of analyses can check the positions of joint lines and accordingly 

adjust the position of the gates. CFD and FEA will allow the investigator to study the 

rates, temperatures, and compound formulations to avoid scorch and optimize the time 

for the injection cycle. 

The application of computational mechanics analysis techniques to elastomers presents 

unique challenges in modeling the following characteristics: 

1. The load-deflection behavior of an elastomer is markedly non-linear. 

2. The recoverable strains can be as high 400 % making it imperative to use 

the large deflection theory. 

3. The stress-strain characteristics are highly dependent on temperature and 

rate effects. 



4. Elastomers are nearly incompressible. 

5. Viscoelastic effects are significant. 

 

FEA SUPPORT TESTING: 
Most commercial FEA software packages use a curve-fitting procedure to generate the 

material constants for the selected material model. The input to the curve-fitting 

procedure is the stress-strain or stress-stretch data from the following physical tests: 

1. Uniaxial tension test 

2. Uniaxial compression test 

3. Planar shear test 

4. Equibiaxial tension test 

5. Volumetric compression test 

A minimum of one test data is necessary, however the greater the amount of test data, the 

better the quality of the material constants and the resulting simulation. Testing should be 

carried out for the deformation modes the elastomer part may experience during its 

service life. To ensure a quasi-static process, the physical testing is carried out at a speed 

of 0.2 inch/minute or 0.084 mm/sec. The material can also be aged in a liquid or at 

elevated temperatures before testing and thus service conditions can be incorporated to 

generate the material constants and subsequent FE analysis. For applications involving 

very high strain rates a Hopkinson’s bar can be used to test the materials and obtain the 

relevant stress-strain data.  



Figure 1:Material Characterization Tests 

A material model describing the elastomer as isotropic and hyperelastic is 

generally used and a strain energy density function (W) is used to describe the material 

behavior. The strain energy density functions are mainly derived using statistical 

mechanics, and continuum mechanics involving invariant and stretch based approaches. 

• Statistical Mechanics Approach 

The statistical mechanics approach is based on the assumption that the 

elastomeric material is made up of randomly oriented molecular chains. The total end to 

end length of a chain (r) is given by 

P(r) = 
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where n is the number of chains in the link and l is the length of each link. 

The strain energy function is given by. 
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Where µ and λm are material constants obtained from the curve-fitting procedure and Jel 

is the elastic volume ratio. 

• Invariant Based Continuum Mechanics Approach 

The Invariant based continuum mechanics approach is based on the assumption 

that for a isotropic, hyperelastic material the strain energy density function can be defined 

in terms of the Invariants. The three different strain invariants can be defined as 
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A general form of the strain energy density function can be given as 
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With the assumption of material incompressibility, I3=1, the strain energy 

function is dependent on I1 and I2 only. The Mooney-Rivlin form can be derived from 

Equation 3 above as 

W(I1,I2) = C10 (I1-3) + C01 (I2-3)…………………………………………………………(4) 

With C01 = 0 the above equation reduces to the Neo-Hookean form. 

• Stretch Based Continuum Mechanics Approach 

The Stretch based continuum mechanics approach is based on the assumption that 

the strain energy potential can be expressed as a function of the principal stretches rather 

than the invariants. The Stretch based Ogden form of the strain energy function is defined 

as 
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where µi and αi are material parameters and for an incompressible material Di=0.  

 The choice of the material model depends heavily on the material and the stretch 

ratios (strains) to which it will be subjected during its service life. As a rule-of-thumb for 

small strains of approximately 100 % or λβ2, simple models such as Mooney-Rivlin are 

sufficient but for higher strains a higher order material model as the Ogden model may be 



required to successfully simulate the ”upturn” or strengthening that can occur in some 

materials at higher strains. 

 

THEORY OF VISCOMETRY: 
The rheological analysis of samples is a fundamental part of developing rubber products.  

Whilst they still have their place, the use melt flow indexers’ is being found to often give 

insufficient results.  These simple devices do not match the versatility of modern 

rheometers, nor can they ensure that a new product will be suitable for use.  A rheometer 

can actually measure sample properties at extremely low shear rates indicating the 

molecular weight, or the high shear rates seen in mixing, extrusion and molding.  

The rheometer can measure the viscosity of product at pre-programmed 

temperatures.  This can also be used to evaluate the processability and degradation of 

materials at these temperatures.  Viscometry is probably the most common rheological 

technique and essentially defines the resistance of a fluid to flow. The equation for the 

coefficient of viscosity is: 

    η (Pa.s) = σ/ γ  ,...…………………………………….…(6) 

where σ = shear stress Pa 

 γ = shear rate  s-1 

The flow properties can be classified into two groups : 

- Newtonian 

- Non - Newtonian 

Non-Newtonian materials such as non-drip paints have changing viscosities with 

different shear rates and should be characterized using controlled shear stress or 

controlled shear rate rheometers.  

There are many types of non-Newtonian behavior but in broad terms they can be 

classified into one of the three following groups: 

- Shear Thinning or Pseudoplastic 

- Shear Thickening or Dilatant 

- Plastic Shear Thinning (Yield Value) 

Similar to material models used in FEA there are many mathematical models to describe 

the characteristic flow of a material including that described by the Bingham model; 



CFD Material Characterization
to Model Extrusion Process

Viscosity Vs. TemperatureViscosity Vs. Shear Rate

Input into Software, Polyflow etc.

Fit material model using curve-fitting, Power law etc.

Carry out Simulation for Die Lip Calculation

Parameters:
•Extrusion Temp.
•Extrusion Speed
•Component Thickness

    σ = σ° + K.γ ,...…………………………………….…….(7) 

   Shear stress = Yield stress + K x Shear rate 

where K and σ° are material constants. Pseudoplastic materials show a decrease in 

viscosity with increase in shear stress and examples include suspensions, polymer 

solutions and melts, gels and ink dispersions. The fall in viscosity is caused by 

breakdown of the structure and in general this is attributed to alignment of particles or 

chains in the shear plane. 

 

Figure 2: Flow Chart for Extrusion Simulation using CFD 

 
TYPES OF RHEOMETERS: 
  

1. Moving Die Rheometer 

2. Oscillating Die Rheometer 
3. Cone and Plate Rheometer 
4. Capillary Rheometer 

5. Mooney Viscometers 

Flowchart in Figure 7 shows the typical processes involved in a CFD simulation to model 

the extrusion process. The two major types of testing carried out is for testing the material 
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viscosity vs. the shear rate and for material viscosity vs. temperature. Just as curve fitting 

of stress-strain data as a material model the viscosity vs. shear rate data is fitted to a 

material model and input into the software code. 

 
The use of a particular type of rheometer is dictated by the type of test data 

needed for the simulation and different associated parameters. To model simulations at 

high extrusion speeds and temperature testing data is needed in the range of 20,000-

30,000 sec-1. Use of a capillary rheometer becomes necessary for such type of material 

characterization testing. 

 

.Figure 3: Material Characterization Data from Different Rheometers 

Test results in Figure 3 at high temperatures show data contamination due to 

material degradation and slippage. The results show the problems associated in using a 

particular instrument outside its test range and utility. 

Figure 4 shows the results from a simulation for die lip calculations in an 

extrusion process for a weatherstrip application. Typically simulations for die lip 

calculations are carried out and the solution is verified by carrying out analyses for 

inverse and forward extrusions. This establishes the suitability of the material 

characterization data and the associated CFD model with mesh discretization and 

boundary conditions. If the material characterization data used in the simulation is 

contaminated due to various reasons like slippage, material degradation etc., the results 

from the CFD model verification step will show the inconsistencies.  



 
Figure 4: CFD Simulation for Die Lip Using Material Characterization Data 

 
 

CONCLUSION: 
A brief review of material characterization testing methods for FEA and CFD simulation 

has been shown, limitations of the associated theory and instruments used in material 

characterization testing have been discussed. Studies have shown that •CAE systems are 

not stand alone processes but require additional support procedures. Material 

characterization procedures for FEA and CFD have been presented and pitfalls reviewed. 

Input material properties are of prime importance for reliable CAE simulation. With 

better understanding of the testing procedure and associated theory, the quality of the 

simulation can be improved. 
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